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A Monte Carlo Study of Size 
and Angular Properties of a Three-Dimensional 
Poisson-Delaunay Cell 

S u s m i t  K u m a r  t and S tewar t  K. Kurtz  2"3 

Receit,ed March 26. 1993 

On the basis of simulation of 1.2 x 106 three-dimensional Poisson-Delaunay 
cells, the statistical properties of their size and angular parameters have been 
studied. The moments of the volume, face area, and edge length distributions 
are found to be equal to those obtained from the exact expressions of Miles and 
of Moiler. The volume, surface area, and face area distributions can be 
described by the two-parameter gamma distribution. The normal distribution 
can be used to describe the distributions of the total edge length of a cell and 
the perimeter of a face. The edge length distribution has also been studied. The 
distribution of the angle in a face is found to be in accordance with its theoreti- 
cal distribution. ~4~ 

KEY WORDS: Voronoi tesselation; Delaunay tesselation; Poisson distribu- 
tion; gamma distribution; normal distribution. 

1. I N T R O D U C T I O N  

F o r  a Po i s son  po in t  process  in a reg ion  R a where  d deno tes  the d imen-  
s ional i ty  of  the space)  with dens i ty  of  nuclei  p, the s implex with vert ices at the 

d +  1 poin ts  which con ta ins  no Po isson  po in t  inside it is cal led a P o i s s o n -  

D e l a u n a y  cell. D e l a u n a y  cells are  space-f i l l ing and  convex.  D e l a u n a y  cells 

are  t r iangles  in two  d imens ions  and t e t r ahedra  in three d imens ions .  

D e l a u n a y  tesse la t ion is the dua l  of  the V o r o n o i  tesselat ion.  ~5~ In the 

V o r o n o i  tesselat ion,  n nucleus  po in ts  are  first genera ted  inside the space  R a 
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and then the set of points closer to a nucleus P than the other nuclei is 
assigned to the nucleus P, thus creating a Voronoi polyhedron associated 
with nucleus P. Each vertex of a Voronoi polyhedron is equidistant from 
d +  1 nucleus points. A vertex of a Voronoi polytope is the circumcenter of 
the circle in two dimensions (of the sphere in three dimensions). The cell 
formed by joining the d +  1 nucleus points associated with a vertex of the 
Voronoi polytope is called the Delaunay cell. 

The Voronoi tesselation has been used as a model in a wide variety of areas 
__agriculture,161 biology, tTl physics,18-~5) geography, ll61 astrophysics,it7 231 
crystallography,124 28~ and zoology and ecology. 129 3~1 An extensive list of 
the areas in which this tesselation has been used can be found in Stoyan 
et  aL (321 and Okabe et  aL c33) 

Medvedev, 134) Medvedev and Naberukhin, 135"36J Medvedev et a./., (37'381 

Hitwari et  aL, 139) and Rustad et  al. ~4~ have used the Delaunay tesselation 
constructed by considering the atom sites as the nucleus points to study the 
structure of liquids, glasses, and amorphous solids. The Delaunay cells 
give the characteristics of the local disorder in liquids and amorphous 
solids. They characterize the holes associated with the four nearest atoms. 
Ostoja-Starzewskil4Jl and Ostoja-Starzewski and W a n g  ~42'43~ have used the 
Poisson-Delaunay tesselation to model hetereogeneous materials. Treating 
the edges of the Delaunay cells as linear elastic rods, they calculated the 
linear mechanical response of the hetereogeneous materials. Christ et  al. ~44 46) 
used the random lattice generated by Poisson-Delaunay tesselation as a 
discrete approximation to a continuum field theory and calculated the 
properties of quantum field theory. They also calculated the mean values of 
the topological and size parameters of two-, three-, and four-dimensional 
Poisson-Delaunay tesselation. 

Miles 1~'2~ and Moller ~3~ theoretically studied the moments of the 
parameters of the Poisson-Delaunay cells. Using the expression for the 
moments of the volumes of the Delaunay cells and theory of residues, 
Rathie ~471 derived an exact expression for the volume of the Delaunay cell 
in one, two, and three dimensions. Okabe e t a L  ~33) have tabulated the 
moments of important parameters of the two-, three-, and four-dimensional 
Poisson-Delaunay cells. 

The properties of Poisson-Voronoi tesselation have been studied by 
many researchers ~4s 68) using the computer simulation. But the properties 
of the Poisson-Delaunay tesselation are less well studied. We have 
simulated more than 10 6 two-dimensional polygons in order to study the 
statistical distributions of the parameters of the two-dimensional Poisson- 
Delaunay tesselation. Details of the simulation will be given elsewhere, t69~ 
The area distribution of the 2D Poisson-Delaunay cells is found to be in 
accordance with the exact distribution of Rathie. t47~ It is also found that 
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Table I. Properties of the Parameters of 3D Poisson-Delaunay Tesselation 

Parameter Minimum Maximum Mean SD" Skewness Kurtosis 

Volume 7.010 x 10 -5 1.8448 1.4765 0.1234 0.8649 4.7091 
Surface area 0.0276 11.0668 2.3886 1.1031 0.4362 0.7870 
Area of a face 0.0015 3.4726 0.5971 0.3319 0.5130 0.8931 
Edge length 0.0119 3.2245 1.2369 0.4297 0.0314 -0.3327 
Total edge length of a cell 1.0099 15.5598 7.4212 1.6292 0.0551 -0.1108 
Perimeter of a face 0.2113 8.6692 3.7106 0.9292 0.0429 -0.1374 
Radius (volume) 0.0256 0.7607 0.3040 0.0878 0.1184 -0.1521 
Radius (surface area) 0.0469 0.9383 0.4242 0.1005 0.0783 -0.1148 
Angle in a face 0.3422 ~ 169.63 ~ 59.984 ~ 23.864 ~ 0.2027 -0.2760 

Standard deviation. 

a two-parameter  gamma distr ibution (see the appendix) can be used to 
describe the area distr ibution of the 2D Poisson-Delaunay  cells. 

In this study, we have simulated more than 1.2 x 10 6 three-dimensional 
Po i sson-Delaunay  cells to study the statistical distributions of their size 
and angular  parameters. The moments  of the volume distr ibution have 
been found to be equal to those obtained theoretically by Miles. ~ It has 
been found that a two-parameter  gamma distr ibution can be used to 
describe the volume, surface area, and face area of the 3D Poisson-  
Delaunay cells. The distr ibutions of the total edge length of a cell and the 
perimeter of a face can be described by a normal  distribution. The distribu- 
tion of the angles between adjacent edges in a face of the 3D Poisson-  
Delaunay cell has been found to be in accordance with the exact expression 
of MilesJ 41 

The volume V, surface area S and face area, perimeter, and edge 
length data have been normalized by multiplying these data by p, pt/2, and 
pt/3, respectively, where p is the nucleus density. The values of equivalent 
radius for volume and surface area were calculated from (3V/4n) ~/3 and 
(S/4rt) ~/'-, respectively. (See Table I.) 

2. R E S U L T S  A N D  D I S C U S S I O N  

2.1 .  V o l u m e  D i s t r i b u t i o n  

The kth moment  of volume Vd of the d-dimensional 
Delaunay cell is given by the expression I~ 31 

Poisson-  
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F(dZ/2)F(d+ k ) F ( ( d  2 + dk + k + 1 ) /2)F a k + ~((d+ 1 )/2) 
E( Vka) -- l-'(d)F((d'- + l ) /2}F((d 2 + dk )/2)l -'a+ t ( (d+ k + 1 )/2)(2aTr ~a- 11/2p)k 

a+, F ( ( k + i ) / 2 )  
x I-I F(i/2) (1) 

i = 2  

where p is the nucleus density and k = 1, 2, 3 ..... 
Using Eq. (1) and theory of residues, Rathie 147~ derived the probability 

distribution function for the volume V a of the one-, two-, and three-dimen- 
sional Poisson-Delaunay cell. In one dimension, V has an exponential 
distribution with parameter p; for p = 1, 

f ( V ) = e  v, V > 0  (2) 

In two dimensions, the probability distribution function for the area of 
Delaunay triangle can be written as 147~ 

( ~ )  , { 2 ~ V ' ~ ,  
f ( V )  = ~ VK~/6 \3  v /3J  V > 0  (3) 

where Kl/6(. ) is the modified Bessel function of order 1/6. 
We find 1691 that the area distribution of the 2D Poisson-Delaunay tri- 

angles can also be described by a two-parameter gamma distribution 
(a = 1.3367 and b = 0.3741 ). 

The volume distribution for the 3D Poisson-Delaunay cells is given by 
the expression 147) 

f ( V ) = A  3 P V -  Q , V  2'+3/2- ~ R , V  2'+5/2- ~ S , V  2'+2 
t = 0  t = 0  t=O 

x [ - l n ( B  3 V -~) + T,]} (4) 

where 

560 x/~ 
A3= 

81n 

27~ 2 
B 3 ~ - -  

16 

P = B3rtF (1/4) r(3/4) 
F(5/6)/"(7/6)  

( -  1)' F - ' ( -  t + 1/4) F ( -  t + I/2) B~ + 5/4 
Q , -  

(t + 1/4) F ( - - t  + 7/12) F ( - - t  + 11/12) t! 
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Table I1. Comparison of Calculated and Theoretical Moments of the 
Parameters of the 3D Poisson-Delaunay Tesselation 

739 

Parameter Theory" Simulation 

Volume E(V) 0.1477 0.1477 
E(V-') 0.0372 0.0370 
E( V s) 0.0135 0.0133 
E( V 4) 0.0064 0.0062 
E( Vsl 0.0038 0.0036 
E( V 6) 0.0027 0.0024 

Area of a face E(A) (3/4n) 2/3 7(5) 3 F(2/3)/(3sn)=0.597 0.5971 
Edge length E(L) (3/4rt) 1/3 5(7) 3 F( 1/3)/(324 ~) = 1.237 1.2369 

" Miles, (t'2) Moiler, TM Okabe et aL, ~ and Eq. (1). 

R , =  
( - -  1 ) ' / - - 2 ( - - t -  1/4) F(  - - t  -- 1/2) O~ +7/4 

(t + 3 /4) / " (  - t  + 1/12) F( - t + 5/12) t! 

F ( - - r -  1 / 4 ) F ( - - t +  1/4)O~ +3/2 

(t + 1/2) F ( -  t + 1/3) F (  - t  + 2/3)(t!) '- 
S, = 

T , =  2ff(t + 1 ) +  ~ b ( - t -  1/4) + ~ k ( - t  + 1 / 4 ) -  t / J ( - t  + 1/3) 

-~J(-t+2/3)+(t+ 1/2) - I  

and ~J(.) is the psi function. 
The mean number  of vertices and the mean volume of the 3D Po i s son -  

Voronoi  cell are 27.09 and 1.000, respectively, and as one 3D Po i s son -  
Delaunay  cell is associated with four 3D Po i s son -Vorono i  cells, the mean 
volume of a 3D P o i s s o n - D e l a u n a y  cell is equal to 4/27.09, i.e., 0.1477. The 
moments  of  the volume dis t r ibut ion of the 3D P o i s s o n - D e l a u n a y  cells 
calculated on the basis of s imulat ion of more than 1.2 x 106 cells (Table II)  
have been found to be equal to those ob ta ined  from Eq. (1). 

We have found that  a two-paramete r  gamma dis t r ibut ion (a = 1.5135, 
b = 0.0965, and mean ab = 0.1460) can be used to describe the volume dis- 
t r ibut ion of the 3D P o i s s o n - D e l a u n a y  cells. These values-of the parameters  
of the g a m m a  distribution" ' give the .value. (70)of. max [fnl-_fobsl as 0.005. 4 
The 5% K o l m o g o r o v - S m i r n o v  (KS)  hmlt  (i.e., 1.63/x/n, where n is the 
sample  size) is 0.0015. Consider ing the large sample  size (i.e., n = 1.2 x 106), 

this difference in max I fn , - fobs [  can be neglected. If we insist on the mean 

4max Ifn,--fobJ is the maximum of the absolute difference between the fitted and the 
observed cumulative distribution ['unctions. 
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Fig. 1. The probability density distribution of volume of the 3D Poisson-Delaunay cells. 
Plus signs and solid line denote the simulation data and the best-fit gamma distribution 
(a = 1.4749 and b = 0.1002), respectively. The simulation data are based on 1.2 x 106 simulated 
three-dimensional Poisson-Delaunay cells�9 The volume data were grouped in equal intervals 
of width 0.025�9 See text for the description of the volume normalization factor. 

v o l u m e  b e i n g  e q u a l  to  0.14778,  t h e n  the  best - f i t  g a m m a  d i s t r i b u t i o n  ha s  the  

p a r a m e t e r s  a = 1.4749 a n d  b = 0.1002 (Fig.  1 ), a n d  m a x  L f n t -  fobsl for  these  

va lues  of  p a r a m e t e r s  is 0.008. 

2.2.  S u r f a c e  Area  

W e  h a v e  f o u n d  t h a t  a t w o - p a r a m e t e r  g a m m a  d i s t r i b u t i o n  (a - - -4 .5530 ,  

b = 0.5269, a n d  m e a n  ab---2.3990) c a n  be  used  to de sc r ibe  the  sur face  a r e a  

d i s t r i b u t i o n  of  the  3 D  P o i s s o n - D e l a u n a y  cells. T h e s e  va lues  of  p a r a m e t e r s  

of  the  g a m m a  d i s t r i b u t i o n  give the  va lue  of  m a x  Ifnt - f o b s l  as 0.004. I f  one  

0.06 
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0.00 . . . .  J i l l  

2 4 6 8 
Surface Area 

Fig. 2. The probability density distribution of surface area of the 3D Poisson-Delaunay cells. 
Plus signs and solid line denote the simulation data and the best-fit gamma distribution 
(a = 4.7020 and b = 0.5080), respectively. The simulation data are based on 1.2 x 106 simulated 
three-dimensional Poisson-Delaunay cells. The surface area data were grouped in equal inter- 
vals of width 0.t5. See text for the description of the surface area normalization factor. 
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Fig. 3. The probability density distribution of equivalent radius of volume and of surface 
area for three-dimensional Poisson-Delaunay cells. The values of equivalent radius for volume 
(solid line) and for surface area (broken line) were calculated from (3 V/4n) 1/3 and (S/41t) 1/2, 
respectively, where V and S denote volume and surface area, respectively. This is based on 
1.2 x 106 simulated three-dimensional Poisson-Delaunay cells. The radius data were grouped 
in equal intervals of width 0.014. 

insists on the mean surface area to be equal to the theoretical one, i.e., 
2.3886, then the best-fit gamma distribution has the parameters a = 4.7020 
and b=0.5080 (Fig. 2), and max Ifn,--fobsl for these values of parameters 
is 0.007. Figure 3 shows the probability distribution of equivalent radius of 
volume and of surface area for three-dimensional Poisson-Delaunay cells. 

2.3. Face Area 

It has been found that a two-parameter gamma distribution with 
parameters a=3.0266 and b=0.1992 can be used to describe the face 

0.08 

0 . 0 6  ~ 

.= 
"~ 0.04 = 

0.02 ' 

0.00 . , . , . , . I I, 

0.0 0.5 1.0 [ .5 2.0 
Area of a Face 

Fig. 4. The probability density distribution of face area of the 3D Poisson-Delaunay cells. 
Plus signs and solid line denote the simulation data and the best-fit gamma distribution 
(a = 3.0266 and b = 0.1992), respectively. The simulation data are based on 1.2 x 106 simulated 
three-dimensional Poisson-Delaunay cells. The face area data were grouped in equal intervals 
of width 0.05. See text for the description of the face area normalization factor. 
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Fig. 5. The probability density distribution of t h e  total edge length of a 3D Poisson- 
Delaunay cell. Plus signs and solid line denote the simulation data and the best-fit normal 
distribution ( a =  1.6507 and ,u=7.4212), respectively. The simulation data are based on 
1.2 x 106 simulated three-dimensional Poisson-Delaunay cells. The cell perimeter data were 
grouped in equal intervals of width 0.25. See text for the description of the perimeter 
normalization factor. 

area distribution of the 3D Poisson-Delaunay cells (Fig. 4). The value of 
max Ifn,-fobsJ for these parameters of the gamma distribution is 0.009. 

2.4. Total  Edge Length of a Cell and Perimeter of a Face 

It has been found that the normal distribution can be used to describe 
the distributions of the total edge length of a cell (Fig. 5) and of the 
perimeter of a face (Fig. 6). The a and/~ parameters of the normal distribu- 

0.06 

0 .04  

0 ,02  

0 .00  i . . . . . . . .  i i i . . . . .  i 

0 2 4 6 8 

Perimeter of A Face 

Fig. 6. The probability density distribution of perimeter of a face of the 3D Poisson- 
Delaunay cell. Plus signs and solid line denote the simulation data and the best-fit normal 
distribution (0=0.9426 and p=3.7106), respectively. The simulation data are based on 
1.2 x 106 simulated three-dimensional Poisson-Delaunay cells. The perimeter of the face data 
were grouped in equal intervals of width 0.125. See text for the description of the perimeter 
normalization factor. 
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tions for these two distributions are (1.6507, 7.4212) and (0.9426, 3.7106), 
respectively. The  values of max Ifni-fob~l for these parameters  of the 
g a m m a  distribution are 0.006 and 0.005, respectively. 

2.ft. A n g l e  in a F a c e  

The dihedral angle is defined as the angle between two faces of a cell, 
measured in a plane perpendicular  to both the faces. For  the 3D Poisson-  
Voronoi  cell, the joint density of two (arbi trary)  dihedral angles ~t, fl 
(Fig. 8) at a random edge is 141 

f(cq fl) = (3--6-~2) sin2 c~ sin2 fl sin2(c~ + fl) 

(0~<~<Tt, 0~</~<rt,  c~+/~>_-n) 

(5) 

By integrating over fl, one gets the dihedral angle distribution as a 
function of only one dihedral angle, 

f ( ~ )  = (3--~_,) [2~(2 + cos 2~) - 3 sin 2~] sinZ c~ 

(0~<c~<~) 

(6) 

The angle A in a face of the 3D Poisson-Delaunay  cell is equal to 
( r e -  ct). Therefore, the distribution of angle A is given by the expression 

0.05 

0.04 

.---~ 0.03 

e 0.02 

0.01 

0.00 

- A )(2 + cos 2A ) + 3 sin 2A ] sin 2 A (7) 

0 I 2 
Edge Length 

Fig. 7. The probability density distribution of edge length of three-dimensional Poisson- 
Delaunay cells. This is based on 1.2 x 10  6 simulated three-dimensional Poisson-Delaunay 
cells. The edge length data were grouped in equal intervals of width 0.05. See text for the 
description of the edge length normalization factor. 
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Dihedral angles at a random edge of a 3D Poisson-Voronoi cell. ~ + 3 + 7 = 2~r. 

T h e  m o d e  of  the func t ion  f(A) is the so lu t ion  o f  the e q u a t i o n  

2 sin A - 2 sin 3A - sin 2A cos A -- 4(rc -- A ) cos  A - 2(~ - A ) cos  3A = 0 

i.e., A = 55.637 ~ 

T h e  expec ted  va lue  and the s t andard  dev ia t ion  o f  the d ihedra l  angle  
are  
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Fig. 9. Distribution ot" the angle in the face of the 3D Poisson-Delaunay cell. Plus signs and 
solid line denote the simulation data and the theoretical expression of Miles 14~ [Eq, (7)], 
respectively, The simulation data are based on 1,2 • 10 ~ simulated three-dimensional Poisson- 
Delaunay cells, The angle data were grouped in equal intervals of width 3 ~ 
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As shown in Table I and Fig. 9, the distribution of the angle in a face 
of a 3D Poisson-Delaunay cell, calculated on the basis of 1.2 x 1 0  6 cells is 
in accordance with the Eq. (7). 

3. C O N C L U S I O N  

More than 1.2 x l 0  6 three-dimensional Poisson-Delaunay cells were 
simulated to study the statistical properties of size and angular parameters 
of the Delaunay cells. The moments of the size distributions were found 
to be equal to those obtained theoretically by Miles, IL2) and Moller TM and 
tabulated in Okabe e taL  ~33~ The volume, surface area, and face area 
distributions can be approximately described by a two-parameter gamma 
distribution. A normal distribution can be used to describe the distribu- 
tions of the total edge length of a cell and the perimeter of a face of the cell. 
The edge length distribution was also studied. The distribution of the angle 
in a face was found to be in accordance with the exact expression of 
Miles. 141 

A P P E N D I X  

(i) The 
described by 

gamma distribution with two parameters a and b is 

X~/- 1 

P . . . . . .  + a., .  - b a F ' a  --''-7)1 e-X/b dx, x > O  

where mean and variance are ab and ab 2, respectively. 

(ii) The normal distribution with two parameters 0. (standard devia- 
tion) and/~ (mean) is described by 

l [ (x- 
P ..... +a.,- ~ e x p  20.2 j d x  
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